Hormone Replacement Therapy in the Geriatric Patient: Current State of the Evidence and Questions for the Future—Estrogen, Progesterone, Testosterone, and Thyroid Hormone Augmentation in Geriatric Clinical Practice: Part 2*

Holtorf, K and Schwartz, E

KEYWORDS

- Thyroid hormone T_3 T_4 TSH Hypothyroidism
- Reverse T3 Pituitary dysfunction

THYROID

Hypothyroidism is a common disorder characterized by inadequate amounts of thyroid hormones available to meet the need for thyroid at the cellular level. Typical symptoms of hypothyroidism include fatigue, weight gain/obesity, depression, cold extremities, thin/friable nails, muscle aches, headaches, decreased libido, low basal body temperature (consistently below 98.6°F), weakness, cold intolerance, loss of temporal eyebrow hair, water retention, and dry skin.

The incidence of thyroid dysfunction with its attendant cellular thyroid deficiency increases significantly with age. 63-66 Because many of the symptoms attributable to subclinical hypothyroidism are often seen with normal aging, significant cellular hypothyroidism often goes undetected and subsequently untreated.

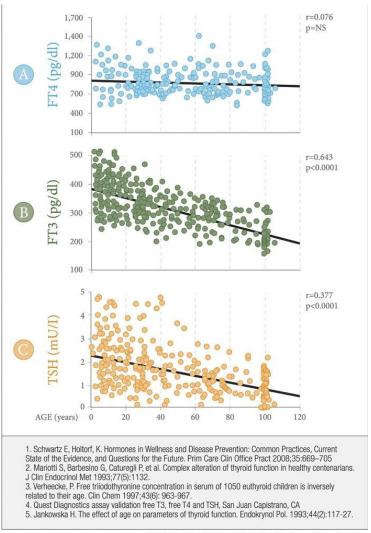
Clin Geriatr Med 27 (2011) 561–575 doi:10.1016/j.cger.2011.07.004

^{*} Thyroid section

The authors have nothing to disclose.

^c Holtorf Medical Group, Torrance, CA, USA

Historically, elevated thyroid-stimulating hormone (TSH) with normal T4 and T3 levels was considered compensated hypothyroidism and thus euthyroid in need of no treatment. Studies have demonstrated that, despite the normal T3 and T4 levels, subclinical hypothyroidism is often associated with significant symptoms and an increased risk of morbidity and mortality. Compensated hypothyroidism and subclinical hypothyroidism are becoming misnomers, because they present clinically significant signs and symptoms of hypothyroidism that do benefit from correct treatment. The symptoms studied and directly connected to hypothyroidism include neuromuscular dysfunction, defection, defecti


Diagnosis

TSH, a pituitary hormone whose function is to stimulate thyroid hormone production by the thyroid gland, is considered the only diagnostic test for hypothyroidism and the most sensitive marker of peripheral tissue availability of thyroid hormones. We have been trained to implicitly assume that TSH levels within the normal range indicate a euthyroid condition necessitating no further testing or clinical substantiation for the condition. To date, in most clinical practices in the United States, hypothyroidism is diagnosed solely when the TSH level is consistently above the upper limit of normal of 4.0 to 5.0 ng/dL. Unfortunately, this assumption no longer holds true when we delve into the domain of thyroid function in the aging population. With significant physiologic stress, illness, or inflammation there is demonstrable suppression of TSH, making the TSH test unreliable because it stays within normal range failing to reflect true thyroid status.^{82,94} Under these conditions, tissue T3 levels are diminished owing to a reduction in uptake of T4, leading to decreasing T4 to T3 conversion.^{82,83,95} Consequently, serum measurements reflect increased serum T4 levels and reduced TSH levels despite the absence of sufficient thyroid hormone in the peripheral tissues.

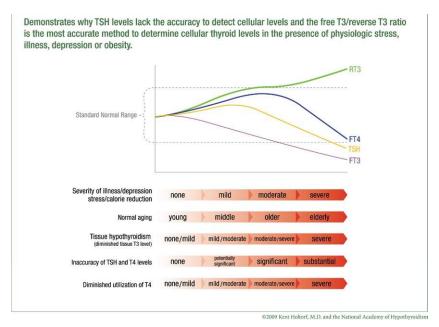
As a result, when relying on serum tests only, clinicians do not treat patients presenting with this thyroid picture assuming they are euthyroid (normal T3, low T4, and normal TSH). Unfortunately, this situation limits our understanding of the physiologic changes occurring at the cellular level leaving a gaping hole and missing the opportunity to help the patients' condition.^{83,84}

Aging and chronic illness also affect the hypothalamic–pituitary–thyroid–cellular axis. Both states tend to present with decreased TSH, decreased conversion of T4 to T3 in the cell, and increased reverse *T3* levels. ^{84,85} In these cases, serum reverse T3 levels may be a useful indicator of low tissue T3 levels because diminished cellular uptake of T4, diminished T4 to T3 conversion and diminished cellular T3 levels correlate inversely with serum reverse T3 levels. ⁸⁵

Another finding in the aging patient is a reduction in TSH response to thyrotropinreleasing hormone from the pituitary, resulting in depressed levels of TSH. This suppression is similar to the TSH suppression found in severely ill patients with documented nonthyroidal illness (**Fig. 1**).^{94,96}

©2009 Kent Holtorf, M.D. and the National Academy of Hypothyroidism

Fig. 1. Age dependent variations in mean serum levels of Free T4 (A), Free T3 (B) and TSH (C) in healthy individuals-a combined analysis of the literature. Demonstrates that TSH is not a reliable marker of active thyroid (T3) levels (low T3 levels are associated with decreased, not increased, TSH levels). (*Courtesy of* Kent Holtorf, MD and the National Academy of Hypothyroidism.)


TSH failure to respond to thyrotropin- releasing hormone stimulation in the elderly further contributes to confusing information gained from standard thyroid testing in this population. Increased incidence of systemic illness and multiple medications in the elderly also directly affect thyroid function, further reducing the accuracy of the standard thyroid tests (T4 and TSH) as markers of true thyroid status.

In aging patients who present with symptoms consistent with hypothyroidism but have a normal TSH and T4 level, a T3/rT3 ratio may help gain more insight of tissue thyroid status. Optimal tissue levels are associated with a free T3/rT3 ratio greater than 1.8. (free T3 is reported in picograms per deciliter and reverse T3 in picograms per deciliter).^{81–93}

Although there are limitations in all type of testing for this age group, obtaining free triiodothyronine, reverse triiodothyronine, and triiodothyronine/reverse triiodothyronine ratios may be helpful to provide a somewhat accurate evaluation of tissue thyroid status and may predict favorable responders to thyroid supplementation.

Treatment

Thyroid replacement is not reported as beneficial during acute stress. When the stress is chronic or age-related treatment with T3 (liothyronine [Cytomel; Jones Pharma.

Fig. 2. Associated serum thyroid levels with progressively decreasing tissue thyroid levels due to stress, illness, depression, calorie reduction or aging (Why standard blood tests lack sensitivity to detect low thyroid in the presence of such conditions). (*Courtesy of Kent* Holtorf, MD and the National Academy of Hypothyroidism.)

Bristol, TN, USA]) containing preparations as opposed to T4 only preparations (levothyroxine [Synthroid, Abbott, Abbott Park, IL, USA]) has been proven to be of significant benefit. Serum testing demonstrating improvement demonstrate reduced fee T3/reverse T3 ratio, but clinical improvement is striking (**Fig. 2**).^{81–93,97–99}

Many symptomatic patients with low tissue thyroid levels (as defined by a free T3/reverse T3 ratio of 1.8 and symptoms of hypothyroidism) with normal TSH and T4 levels may benefit from T3 thyroid replacement, often with significant improvement in fatigue, depression, 100,101 weight gain and obesity, 102 heart failure, 90 fibromyalgia, 103,104 cholesterol levels, 72,105 and numerous other chronic conditions.

In conclusion, the data reviewed herein have shown hormone therapies to improve some conditions associated with aging. Additionally, some of the long-held fears of significant side effects associated with hormone supplementation may be overstated, especially when providing patients with individualized care and optimal monitoring. We encourage clinicians to consider such interventions based on the evidence presented. More long-term studies are needed to further quantify and substantiate the risks and benefits associated with the use of such therapies.

REFERENCES

- 1. Brown-Séquard CE. The effects produced on man by subcutaneous injection of a liquid obtained from the testicles of animals. Lancet 1889;137:105–7.
- 2. Dickinson P, Zinneman HH, Swaim WR, et al. Effects of testosterone treatment on plasma proteins and amino acids in men. J Clin Endocrinol Metab 1969;29:837–41.
- 3. Sorva R, Kuusi T, Taskinen MR, et al. Testosterone substitution increases the activity of lipoprotein lipase and hepatic lipase in hypogonadal males. Atherosclerosis 1988;69:191–7.
- 4. Kasperk CH, Wergedal JE, Farley JR, et al. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 1989;124:1576–8.
- 5. Gardner FH, Nathan DG, Piomelli S, et al. The erythrocythaemiceffects of androgens. Br J Haematol 1968;14:611–5.
- 6. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 2002;87:589–98.
- 7. Mulligan T, Frick M, Zuraw Q, et al. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract 2006;60:762–9.
- 8. Winters J. Current status of testosterone replacement therapy in men. Arch Fam Med 1999;8:257–63.
- 9. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 2005;26:833–76.
- 10. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2006;295: 1288–99.
- 11. Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men: results from the third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007;30:234–8.
- 12. Stellato RK, Feldman HA, Hamdy O, et al. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts Male Aging Study. Diabetes Care 2000;23:490–4.
- 13. Laaksonen DE, Niskanen L, Punnonen K, et al. Testosterone and sex hormone binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 2004;27:1036–41.

- 14. Shores MM, Matsumoto Am, Sloan KL, et al. Low serum testosterone and mortality in male veterans. Arch Intern Med 2006;166:1660 –5.
- 15. Khaw KT, Dowsett M, Folkerd E, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 2007:116:2694–701.
- 16. Wald M, Meacham RB, Ross LS, et al. Testosterone replacement therapy for older men. J Androl 2006:27:126–32.
- 17. Matsumoto AM. Hormonal therapy of male hypogonadism. Endocrinol Metab Clin North Am 1994:23:857–75.
- 18. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc 2003;51:101–15.
- 19. Blum J, Harris RH. Diagnosis and treatment of hypogonadism with emphasis on erectile dysfunction and osteoporosis. Prim Care Case Reviews 2003;6:97–109.
- 20. Basaria S, Dobs AS. Hypogonadism and androgen replacement therapy in elderly men. Am J Med 2001;110: 563–72.
- 21. Bhasin S, Bagatell CJ, Bremner WJ, et al. Issues in testosterone replacement in older men. J Clin Endocrinol Metab 1998;83:3435–48.
- 22. Carruthers M, Trinick TR, Wheeler MJ. The validity of androgen assays. The Aging Male 2007;10:165–72.
- 23. Wheeler MJ, Barnes SC. Measurement of testosterone in the diagnosis of hypogonadism in the ageing male. Clin Endocrinol (Oxf) 2008;69:515–25.
- 24. Lazarou R, Reyes-Vallejo L. Morgentaler A. Wide variability in laboratory reference values for serum testosterone. J Sex Med 2006;3:1085–9.
- 25. Morgentaler A. Commentary: guidelines for male testosterone therapy: a clinician's perspective. J Clin Endocrinol Metab 2007;92:416–7.
- 26. English KM, Steeds RP, Jones HT, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind placebo-controlled study. Circulation 2000;102:1906–11.
- 27. Rosano GM, Leonardo F, Pagnotta P, et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation 1999;99:1666–70.
- 28. Webb CM, Adamson DL, de Zeigler D, et al. Effect of acute testosterone on myocardial ischemia in men with coronary artery disease. Am J Cardiol 1999;83: 437–9.
- 29. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146–56.
- 30. Conroy S. Defining frailty: the holy grail of geriatric medicine. J Nutr Health Aging 2009;13:389.
- 31. Kenny AM, Kleppinger A, Annis K, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc 2010;58:1134–43.
- 32. Srinivas-Shankar U, Roberts SA, Connolly MJ, et al. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2010;95:639–50.
- 33. Page ST, Amory JK, Bowman FD, et al. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. J Clin Endocrinol Metab 2005;90:1502–10.
- 34. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab 1999;84:2647–53.

- 35. Clague JE, Wu FC, Horan MA. Difficulties in measuring the effect of testosterone replacement therapy on muscle function in older men. Int J Androl 1999;22:261–5.
- 36. Wittert GA, Chapman IM, Haren MT, et al. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci 2003;58:618–625.
- 37. Brill KT, Weltman AL, Gentili A, et al. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab 2002;87:5649–57.
- 38. Nair KS, Rizza RA, O'Brien P, et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 2006;355:1647–59.
- 39. Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med 2010;363:109–22.
- 40. Barrett-Conner E, Von Muhlen DG, Kritz-Silverstein D. Bioavailable testosterone and depressed mood in older men: the Rancho Bernardo Study. J Clin Endocrinol Metab 1999;84:573–7.
- 41. Zarrouf FA, Artz S, Griffith J, et al. Testosterone and depression: systematic review and meta-analysis. J Psychiatr Pract 2009;15:289–305.
- 42. Pope HG Jr, Amiaz R, Brennan BP, et al. Parallel-group placebo-controlled trial of testosterone gel in men with major depressive disorder displaying an incomplete response to standard antidepressant treatment. J Clin Psychopharmacol 2010;30: 126–34.
- 43. Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab 1999;84:3681–5.
- 44. Cherrier MM, Asthana S, Plymate S, et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology 2001;57:80–8.
- 45. Haren MT, Wittert GA, Chapman IM, et al. Effects of oral testosterone undecenoate on visuospatial cognition, mood and quality of like in elderly men with low-normal gonadal status. Maturitas 2005;50:124–33.
- 46. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA 2008;299:39–52.
- 47. Isidori AM, Giannetta E, Gianfrilli D, et al. Effects of testosterone on sexual function in men: results of a meta-analysis. Clin Endocrinol (Oxf) 2005;63:381–94.
- 48. Boloña ER, Uraga MV, Haddad RM, et al. Testosterone use in men with sexual dysfunction: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc 2007:82:20–8.
- 49. Emmelot-Vonk MH, Verhaar HJ, Nakhai-Pour HR, et al. Effect of testosterone supplementation on sexual functioning in aging men: a 6-month randomized con- trolled trial. Int J Impot Res 2009;21:129–38.
- 50. Frankle MA, Eichberg R, Zachariah SB. Anabolic androgenic steroids and a stroke in an athlete: case report. Arch Phys Med Rehab 1988;69:632–3.
- 51. McNutt RA, Ferenchick GS, Kirlin PC, et al. Acute myocardial infarction in a 22-year-old world class weight lifter using anabolic steroids. Am J Cardiol 1988;62: 164.
- 52. Meikle AW, Arver S, Dobs AS, et al. Prostate size in hypogonadal men treated with a nonscrotal permeation-enhanced testosterone transdermal system. Urology 1997;49:191–6.
- 53. Behre HM, Bohmeyer J, Nieschlag E. Prostate volume in testosterone-treated and untreated hypogonadal men in comparison to age-matched normal controls. Clin Endocrinol (Oxf) 1994;40:341–9.

- 54. Cooper CS, Perry PJ, Sparks AE, et al. Effect of exogenous testosterone on prostate volume, serum and semen prostate specific antigen levels in healthy young men. J Urol 1998;159:441–3.
- 55. Huggins C, Stevens RE Jr, Hodges CV. Studies on prostatic cancer II: the effects of castration on advanced carcinoma of the prostate gland. Arch Surg 1941;43: 209–23.
- 56. Morgentaler A. Testosterone replacement therapy and prostate cancer. Urol Clin North Am 2007;34:555–63.
- 57. Stattin P, Lumme S, Tenkanen L, et al. High levels of circulating testosterone are not associated with increased prostate cancer risk: a pooled prospective study. Int J Cancer 2004;108:418–24.
- 58. Barrett-Connor E, Garland C, McPhillips JB, et al. A prospective, population-based study of androstenedione, estrogens, and prostatic cancer. Cancer Res 1990;50: 169–73.
- 59. Parsons JK, Carter HB, Platz EA, et al. Serum testosterone and the risk of prostate cancer: potential implications for testosterone therapy. Cancer Epidemiol Biomark- ers Prev 2005;14:2257–60.
- 60. Marks LS, Mazer NA, Mostaghel E, et al. Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial. JAMA 2006;296:2351–61.
- 61. Bhasin S, Singh AB, Mac RP, et al. Managing the risks of prostate disease during testosterone replacement therapy in older men. J Androl 2003;24:299–311.
- 62. Liverman CT, Blazer DG. Testosterone and aging: clinical research directions. Institute of Medicine. Washington (DC): National Academies Press; 2004.
- 63. Canaris GJ, Manowitz NR, Mayor G, et al. The Colorado thyroid disease prevalence study. Arch Intern Med 2000;160:526–34.
- 64. Mariotti S, Barbesino G, Caturegli P, et al. Complex alterations of thyroid function in healthy centenarians. J Clin Endocrinol Metab 1993;77:1130-4.
- 65. Van den Beld AW, Visser TJ, Feelders RA, et al. Thyroid hormone concentrations, disease, physical function and mortality in elderly men. J Clin Endocrinol Metab 2005:90:6403–9.
- 66. Magri F, Fioravanti CM, Vignati G, et al. Thyroid function in old and very old healthy subjects. J Endocrinol Invest 2002;25:60–3.
- 67. McDermott MT, Ridgway C. Subclinical hypothyroidism is mild thyroid failure and should be treated. J Clin Endocrinol Met 2001;86:4585–90.
- 68. Monzani F, Caraccio N, Del Guerra P, et al. Neuromuscular symptoms and dysfunc- tion in subclinical hypothyroid patients: beneficial effect of L-T4 replacement therapy. Clin Endocrinol 1999;51:237–42.
- 69. Joffe RT, Levitt AJ. Major depression and subclinical (grade 2) hypothyroidism. Psychoneuroendocrinology 1992;17:215–21.
- 70. Haggerty JJ Jr, Stern RA, Mason GA, et al. Subclinical hypothyroidism: a modifiable risk factor for depression? Am J Psychiatry 1993;150:508–10.
- 71. Baldini IM, Vita A, Maura MC, et al. 1997 Psychological and cognitive features in subclinical hypothyroidism. Prog Neurophsychopharmacol Biol Psychiatry 1997;21: 925–35.
- 72. Danese MD, Ladenson PW, Meinert CL, et al. Effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab 2000;85:2993–3001.
- 73. Monzani F, Caraccio N, Siciliano G, et al. Clinical and biochemical features of muscle dysfunction in subclinical hypothyroidism. J Clin Endocrinol Metab 1997;82:3315–8.
- 74. Forfar JC, Wathen CG, Todd WT, et al. Left ventricular performance in subclinical hypothyroidism. QJM 1985;57:857–65.

- 75. Foldes J, Istvanfy M, Halmagyi M, et al. Hypothyroidism and the heart. Examination of left ventricular function in subclinical hypothyroidism. Acta Med Hung 1987;44: 337–47.
- 76. Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid 2000;10:665–79.
- 77. Walsh JP, Bremner AP, Bulsara MK, et al. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med 2005;165:2467–72.
- 78. Monzani F, Del Guerra P, Caraccio N, et al. Subclinical hypothyroidism: neurobehavioral features and beneficial effect of I-thyroxine treatment. Clin Invest 1993;71: 367–71.
- 79. Ridgway EC, Cooper DS, Walker H, et al. Peripheral responses to thyroid hormone before and after L-thyroxine therapy in patients with subclinical hypothyroidism. J Clin Endocrinol Metab 1981;53:1238–42.
- 80. Nystrom E, Caidahl K, Fager G, et al. A double-blind cross-over 12-month study of L-thyroxine treatment of women with 'subclinical' hypothyroidism. Clin Endocrinol 1988;29:63–76.
- 81. Docter R, Krenning EP, de Jong M, et al. The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol (Oxf) 1993;39:499–518.
- 82. Peeters RP, Wouters PJ, Kaptein E, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 2003;88:3202–11.
- 83. Iervasi G, Pinitore A, Landi P, et al. Low-T3 syndrome a strong prognostic predictor of death in patients with heart disease. Circulation 2003;107:708–13.
- 84. Peeters RP, Wouters PJ, van Toor H, et al. Serum 3,3=,5=-triiodothyronine (rT3) and 3,5,3=-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab 2005;90:4559–65.
- 85. Chopra IJ, Solomon DH, Hepner GW, et al. Misleadingly low free thyroxine index and usefulness of reverse triiodothyronine measurement in nonthyroidal illnesses. Ann Intern Med 1979:90:905–12.
- 86. Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med 2007;262:690–701.
- 87. Zoccali C, Tripepi G, Cutrupi S, et al. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J Am Soc Nephrol 2005;16:2789–95.
- 88. Pingitore A, Landi P, Taddei MC, et al. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 2005;118:132–6.
- 89. Kozdag G, Ural D, Vural A, et al. Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail 2005;7:113–8.
- 90. Pingitore A, Galli E, Barison A, et al. Acute effects of triiodothyronine replacement therapy in patients with chronic heart failure and low T3 syndrome: a randomized placebo-controlled study. J Clin Endocrinol Met 2008;93:1351–8.
- 91. Dulchavsky SA, Kennedy PR, Geller ER, et al. T3 preserves respiratory function in sepsis. J Trauma 1991;31:753–9.
- 92. Meyer T, Husch M, van den Berg E, et al. Treatment of dopamine-dependent shock with triiodothyronine: preliminary results. Deutsch Med Wochenschr 1979;104: 1711–4.
- 93. Hamilton MA, Stevenson LW, Fonarow GC, et al. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 1998;81:443–7.

- 94. Van Coevorden A, Laurent E, Decoster C, et al. Decreased basal and stimulated thyrotropin secretion in healthy elderly men. J Clin Endocrinol Metab 1989;69: 177–85.
- 95. Hermann J, Heinen E, Kroll HJ, et al. Thyroid function and thyroid hormone metabolism in elderly people low T3–syndrome in old age. Klin Wochenschr 1981; 59:315–23.
- 96. Chakraborti S, Chakraborti T, Mandal M, et al. Hypothalamic–pituitary–thyroid axis status of humans during development of ageing process. Clin Chim Acta 1999;288: 137–45.
- 97. Hesch RD, Husch M, Kodding R, et al. Treatment of dopamine-dependent shock with triiodothyronine. Endocr Res Commun 1981;8:299–301.
- 98. Klemperer JD, Klein IL, Ojamaa K, et al. Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 1996;61:1323–9.
- 99. Smidt-Ott UM, Ascheim DD. Thyroid hormone and heart failure. Curr Heart Fail Rep 2006;3:114–9.
- 100. Abraham G, Milev R, Lawson JS. T3 augmentation of SSRI resistant depression. J Affect Dis 2006;91:211–5.
- 101. Posternak M, Novak S, Stern R, Hennessey J, Joffe R, et al. A pilot effectiveness study: placebo-controlled trial of adjunctive L-triiodothyronine (T3) used to acceler- ate and potentiate the antidepressant response. Int J Neuropsychopharmacol 2008;11:15–25.
- 102. Krotkiewski M, Holm G, Shono N. Small doses of triiodothyronine can change some risk factors associated with abdominal obesity. Int J Obes 1997;21:922–9.
- 103. Lowe J, Garrison R, Reichman A, Yellin J, et al. Effectiveness and safety of T3 (triiodothyronine) therapy for euthyroid fibromyalgia: a double-blind placebo-controlled response-driven crossover study. Clinical Bulletin of Myofascial Therapy 1997;2:31–58.
- 104. Yellin BA, Reichman AJ, Lowe JC, et al. The process of change during T3 treatment for euthyroid fibromyalgia: a double-blind placebo-controlled crossover study. In: The Metabolic Treatment of Fibromyalgia. Old Fort (NC): McDowell Publishing: 2000.
- 105. Tanis BC, Westendorp RGJ, Smelt AHM. Effect of thyroid substitution on hypercholesterolaemia in patients with subclinical hypothyroidism: a re-analysis of intervention studies. Clin Endocrinol 1996;44:643–9.

HRT in the Geriatric Patient

HRT in the Geriatric Patient